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Abstract— Numerical instability often occurs in evolving of
parametric active contours. This is mainly due to the undesired
change of parametrization during evolution. In this paper,
we propose a new tangential diffusion term to compensate
this undesired change. As a result, the parametrization will
converge to a parametrization that is proportional to the
natural parametrization which implies that the control points of
the contour are uniformly distributed. We theoretically prove
that this tangential diffusion term is bounded and therefore
numerically stable. Several experiments were conducted and
verified the feasibility of the proposed tangential diffusion force.

I. INTRODUCTION

One problem that parametric active contours often face

is that the control points may bunch together or form self-

intersection during evolution. The consequence is that it

may lead to unreliable calculation of some quantities such

as curvature, normal vector and cause the failure of the

evolution. Figure 1 gives an example where parametric active

contours failed due to this numerical instability. Numerically,

this is due to the irregular spacing of control points, i.e.,

undesired change of the parametrization which is a side

effect of parametric curve evolution. Researchers have been

investigating this problem and proposed different techniques

to prevent or compensate the undesired change of the

parametrization [2], [6], [13], [14], [19].

In terms of the way, discretely or continuously, of solving

this problem, these techniques can be classified into two

groups. In the first group, the spacing of control points are di-

rectly and discretely controlled by re-distributing the control

points. For instance in [13], [2], the authors proposed to re-

sample the control points every a few iterations or when the

distance between neighboring points falls below a predefined

threshold. This kind of techniques are straightforward and

easy to implement, but also suffer from the limitation that

the computation time increases due to the frequent check

of the distances. Another group of techniques are proposed

in [6], [14], [19], extra tangential forces are introduced
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Fig. 1. An illustration that parametric active contours could be numerical
instable during evolution . (a)Iteration 500. Control points bunched together.
(b)Iteration 1000. Active contours failed.

to compensate the undesired change of the parametrization

during evolution.

In this paper, a new complete tangential diffusion force

is presented for redistribution of the control points of a

parametric active contour. We will show that by imposing this

new complete tangential diffusion force, the change of the

parametrization is subject to a diffusion equation. After iter-

ations, the parametrization will converge to one parametriza-

tion that is proportional to the natural parametrization, i.e.,

the uniform distribution of the control points. We will theo-

retically prove that this tangential diffusion term is bounded

and therefore numerically stable. Several experiments is

presented and verify the feasibility of the proposed tangential

diffusion force.

II. BACKGROUND AND RELATED WORKS

A. Active contours: a variational segmentation framework

Active contours, sometimes referred to snakes, were first

proposed by Kass etc. in [9]. Since then, much research

has been carried out and many extensions and variations

have been proposed for numerous applications such as image

segmentation and visual tracking[21], [20], [5], [4], [8], [7],

[3], [15], [16], [17], [18], [15].

Typically, active contours can be formulated as a min-

imization of an energy functional. The basic framework

introduced by Kass etc. in [9] is as follows. Assume that

C is a parametric curve which is represented as

C (r) = (x(r),y(r)),r ∈ [0,1] (1)

where r is a parametrization of the curve. The energy

functional is then defined as follows.

E(C ) =
∫ 1

0

(
α
∥∥dC

dr

∥∥2
+β

∥∥d2C

dr2

∥∥2
+Eimage +Econ

)
dr

(2)
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Here C denotes a curve. The first two terms in the integral

are so-called internal forces which characterize the curve

itself. By minimizing these two terms, we can regulate or

smooth the curve during iteration. The third term is so-called

image-dependent term. By minimizing this term, the curve

will be driven to the desired boundary of the object. The last

term gives rise to extra constraints.

B. Stabilizing Parametric Active Contours

For parametric active contours, the curve is often dis-

cretized as a set of control points, i.e. a first-order spline.

In practice, it is of great importance to maintain a uniform

distribution of the control points along the curve during

evolution. It makes the computation of geometric quantities

such as the normal vector, curvature easy and stable.

Assume that a 2D continuous active contour C = C (x,y)
is parameterized by p. In order to have a uniform distribu-

tion of the control points, the parametrization p should be

proportional to the natural parametrization s, i.e.,

g(p) = ‖∂C

∂ p
‖= ζ (3)

where ζ is a constant.

For the initial curve, the control points can be uniformly

distributed. However, it has been found that the parametriza-

tion may change during evolution. Discretely, the distances

between neighboring points may change and are not equal.

Assume that the general form of a planar curve evolution

can be expressed as follows.

∂C (p, t)
∂ t

= α(p, t)T+β (p, t)N (4)

where T denotes the tangential vector. N denotes the outward

normal vector. p ∈ [0, l] is a parametrization. t is the artificial

evolving time. In [10], the author proved that g(p, t) evolves

according to the following equation:

∂g(p, t)
∂ t

=
∂α
∂ p

+βκg (5)

where κ denotes the curvature.

It is worth noting that the tangential term α does not affect

the shape of the curve but change the parametrization. The

normal term β is, on the other hand, responsible for the

change of the shape. Without considering the problem of

numerical instability, in fact only β is essential for the curve

evolution. This is the reason why only the normal term β
is considered in the level set methods since one does not

parameterize the curve in the level set methods. But in the

parametric active contours methods, α becomes important

and it is possible to actively control the evolution of the

parametrization by imposing an additional tangential term.

In [6], the authors proposed a tangential force to control

the metric function g(p, t).

ftangent = (
∂ 2C

∂ p2
·T)T =

∂g
∂ p

T (6)

By imposing this tangential force, g(p, t) is governed by the

following partial differential equation:

∂g
∂ t

=
∂ 2g
∂ p2

+βκg (7)

The above equation corresponds to the diffusion of g(p, t)
along the curve if β is small enough. The authors argued

that when the steady state is reached, the parametrization

will be proportional to the natural parametrization. However,

the assumption that β is small enough is often not true in

practice. The additional tangential force is insufficient to

compensate all the undesired change of parametrization and

therefore incomplete. The evolution of parametrization does

not follow the exact heat diffusion equation. Inspired by this

work, we proposed a complete tangential force that can offset

all the undesired change of the parametrization.

III. A COMPLETE TANGENTIAL DIFFUSION FORCE

It has been discussed that an additional tangential force

α(p, t) can be introduced to regulate the evolution of the

parametrization. Note that if α is defined as follows:

∂α
∂ p

= c2 ∂ 2g
∂ p2

−βκg (8)

where c is a constant. Substituting Equation (8) into Equation

(5) leads to
∂g
∂ t

= c2 ∂ 2g
∂ p2

(9)

This is a heat equation with the periodic boundary condition

g(0, t) = g(l, t) and initial value g(p,0). The solution is given

as follow [1].

g(p, t) = a0 +
∞

∑
n=1

[ancos(
nπ
l

p)+bn sin(
nπ
l

p)]e−( cnπ
l )2t

(10)

where

a0 =
1

l

∫ l

0
g(p,0)d p (11)

an =
2

l

∫ l

0
cos(

nπ
l

p)g(p,0)d p (12)

bn =
2

l

∫ l

0
sin(

nπ
l

p)g(p,0)d p (13)

Let t → ∞, we obtain the steady state solution g(p,∞) = a0.

Note that

a0 =
1

l

∫ l

0
g(p,0)d p =

1

l

∫
C0

ds =
length(C0)

l
(14)

Where Ct , t ∈ [0,∞) denotes the curve at the time t. Very

often l is set to 1, then g(p,∞) = length(C0). This proves

that after sufficient iterations, the parametrization will be

proportional to the natural parametrization. In other words,

the control points will be distributed uniformly.

The tangential force proposed here is superior to the one

in [6] because theoretically it can offset the undesired change

of the parametrization completely and therefore control the

parametrization more precisely. In the following, we shall

prove this both analytically and experimentally.
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A. Boundedness of Tangential Evolution

In this section we shall prove that the proposed tangential

redistribution force α(p, t) is bounded i.e., sup
p,t

{‖α(p, t)‖}<
∞ for every p ∈ [0, l], t ∈ [t0,∞) and therefore numerically

stable.

Integrating both sides of Equation (8) along the curve

yields

α(p, t) =
∫ p

0
(c2 ∂ 2g(p, t)

∂ p2
+β (p, t)κ(p, t)g(p, t))d p (15)

Hence,

‖α(p, t)‖= ‖
∫ p

0
(c2 ∂ 2g(p, t)

∂ p2
+β (p, t)κ(p, t)g(p, t))d p‖

(16)

≤
∫ l

0
‖c2 ∂ 2g(p, t)

∂ p2
+β (p, t)κ(p, t)g(p, t)‖d p (17)

≤
∫ l

0
‖c2 ∂ 2g(p, t)

∂ p2
‖d p+

∫ l

0
‖β (p, t)κ(p, t)g(p, t)‖d p (18)

=
∫ l

0
‖∂g(p, t)

∂ t
‖d p+

∫ l

0
‖β (p, t)κ(p, t)g(p, t)‖d p (19)

Taking the partial derivative of both sides of Equation (10)

with respect to t yields

∂g(p, t)
∂ t

=
∞

∑
n=1

−(
cnπ

l
)2[an cos(

nπ
l

p)+bn sin(
nπ
l

p)]e−( cnπ
l )2t

(20)

Substituting Equation (20) into the first term of Equation

(19), we have∫ l

0
‖∂g(p, t)

∂ t
‖d p (21)

=
∫ l

0
‖

∞

∑
n=1

−(
cnπ

l
)2[an cos(

nπ
l

p)+bn sin(
nπ
l

p)]e−( cnπ
l )2t‖d p

(22)

≤
∫ l

0

∞

∑
n=1

‖(cnπ
l

)2[an cos(
nπ
l

p)+bn sin(
nπ
l

p)]e−( cnπ
l )2t‖d p

(23)

≤ M
∫ l

0

∞

∑
n=1

(
cnπ

l
)2e−( cnπ

l )2td p (24)

= Ml
∞

∑
n=1

λ 2
n e−λ 2

n t (25)

where λn = cnπ
l and M = sup

p∈[0,l]
{‖an cos( nπ

l p) +

bn sin( nπ
l p)‖}. Now we shall prove that the series of

functions ∑∞
n=1 λ 2

n e−λ 2
n t converges. In fact, using DÁlembertś

ratio test, it can be proved that the series ∑∞
n=1 λ 2

n e−λ 2
n t0 is

convergent, hence ∑∞
n=1 λ 2

n e−λ 2
n t converges, i.e.,

∞

∑
n=1

λ 2
n e−λ 2

n t ≤
∞

∑
n=1

λ 2
n e−λ 2

n t0 ≤W1 (26)

where W1 is the upper bound. Therefore, the first integral of

Equation (19) is bounded by MlW1.

Now let us examine the second integral of Equation (19).

First, assume that β (p, t)κ(p, t), which is normally defined

by the need of deforming the curve so as to attach it to the

desired object boundary, is bounded by F .

∫ l

0
‖β (p, t)κ(p, t)g(p, t)‖d p ≤ F

∫ l

0
‖g(p, t)‖d p (27)

= F
∫ l

0
‖a0 +

∞

∑
n=1

[an cos(
nπ
l

p)+bn sin(
nπ
l

p)]e−( cnπ
l )2t‖d p

(28)

≤ Fl|a0|+
∞

∑
n=1

∫ l

0
‖[an cos(

nπ
l

p)+bn sin(
nπ
l

p)]e−( cnπ
l )2t‖d p

(29)

≤ Fl|a0|+Ml
∞

∑
n=1

e−( cnπ
l )2t (30)

Similarly we can prove that ∑∞
n=1 e−( cnπ

l )2t converges and

bounded by W2. Combining these two terms, it is evident to

see that α is bounded, i.e.,

sup
p∈[0,l],t∈[t0,∞)

{
‖α(p, t)‖

}
≤ Ml(W1 +W2)+Fl|a0|< ∞

(31)

B. Convergence Speed of Tangential Diffusion

Recall that Equation (10) gives the behavior of the

parametrization g(p, t) after adding an tangential regulating

force α(p, t). It has been proved that g(p, t) will converge

to the parametrization that is proportional to the natural

parametrization which indicates that the control points will

be uniformly distributed. We also prove that α(p, t) is

bounded. In practice, another important issue is to investigate

the convergence speed of the proposed tangential diffusion.

Again Equation (10) shows that it exponentially converges

to the steady-state solution and the order is given by ( cnπ
l )2.

Theoretically, increasing c will speed up the convergence

of the tangential diffusion. However, c can not be selected

arbitrarily for the reason of numerical stability of tangential

diffusion.

C. Numerical Implementation

The proposed additional tangential diffusion force α is

defined as shown in Equation (8). In practice, we discretize

it by means of finite difference method.

αi+1 −αi

Δp
= c2 gi+1 −2gi +gi−1

(Δp)2
−βiκigi (32)

Reordering the terms gives us

αi+1 = αi +
c2

Δp
(gi+1 −2gi +gi−1)−Δpβiκigi (33)

where

gi = ‖Ci+1 −Ci

Δp
‖ (34)

IV. EXPERIMENTS

To validate the proposed complete tangential diffusion

term, two experiments have been conducted.
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Fig. 2. A comparison of curve evolution with or without the proposed
tangential force in a synthetic image. (a)Without tangential forces. (b)With
the proposed tangential force.
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Fig. 3. A comparison of curve evolution with or without the proposed
tangential force in a synthetic image. (a) Mean of the inter-point distance.
(b) Standard deviation of the inter-point distance.

A. Image segmentation

Firstly, we tested the proposed term on the synthetic image

which is also shown in Fig. 1. The result can be seen in

Fig. 2. In Fig. 2(a), the numerical instability occurred when

without using any tangential force and several loops were

formed and eventually failed to segment the star. On the

other hand, with the proposed tangential diffusion term, it

succeeded in evolving stably and capturing the boundary of

the star, as shown in Fig. 2(b). Fig. 3 shows the mean and

standard deviation of the distance between the neighboring

points.

B. A real-world application: weld pool boundary tracking

In modern industry, arc welding plays an important role

for jointing materials. It however still heavily relies on

the human welders. To automate the arc welding process,

extracting visual information is of great importance. Many

researchers and engineers have been developing different

kinds of vision system to obtain visual information of the

seam and the weld pool. A more detailed introduction can

be found in [12].

To tackle this problem, we proposed a Feature Selected

Adaboost Geodesic Active Region (FSA-GAR). The Euler -

Lagrange equation is defined as followed.

∂x(t)
∂ t

= η1 g(pb(x))κ�n︸ ︷︷ ︸
geodesic internal force

−η2 (∇g(pb(x)) ·�n)�n︸ ︷︷ ︸
boundary-based force

− γ log
pin(I(x))
pout(I(x))

�n
︸ ︷︷ ︸
region-based force

(35)

The active contours used in experiment 1 and 2 are active

contours driven by region-based forces. For the weld pool

image, we use the proposed Feature Selective Adaboosting

Geodesic Active Region(FSA-GAR). The results are pre-

sented and discussed here.

Figure 2 shows the results in a synthetic image. In Figure

2(a), the numerical instability occurred when without using

any tangential force and several loops were formed and

eventually failed to segment the star. On the other hand,

with the proposed tangential diffusion term, it succeeded in

evolving stably and capturing the boundary of the star, as

shown in Figure 2(b). Figure 2(c) and (d) show the mean and

standard deviation of the distance between the neighboring

points.

Fig. 5 and 6 show another two examples in an image of

a plane and a typical weld pool image. The results confirm

again that the proposed tangential diffusion term can stabilize

the evolution of parametric active contours.

The comparison between the complete tangential force

proposed here and the incomplete one proposed in [6] has

also been carried out. The results are presented in Fig. 7.

It can be seen that with the complete tangential force, the

control points are much more evenly distributed.

(a) (b)

Fig. 4. A comparison of curve evolution with or without the proposed
tangential force in an image of a plane. The red circles indicate the initial
contours. The final curve are marked in green. (a)Without tangential force.
(b)With tangential force.
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(a) Mean of the inter-point distance.
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(b) Standard deviation of the inter-point distance.

Fig. 5. A comparison of curve evolution with or without the proposed
tangential force in an image of a plane. The red circles indicate the initial
contours. The final curve are marked in green.

V. CONCLUSIONS

Parametric active contours often face the problem of

numerical instability during evolution which is mainly caused

by undesired change of the parametrization. In this paper, a

new tangential diffusion term is proposed to compensate this

undesired change. We analytically prove that by adding this

term, the parametrization will converge to the one that is

proportional to the natural parametrization. This implies that

the control points are distributed uniformly. The experiments

in synthetic and real-world images verify the feasibility of

the proposed tangential diffusion term.
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